
1. API연결# API 연결import osos.environ["OPENAI_API_KEY"] = "sk로 시작하는 자기 API Key 입력" 2. llm에 입력할 템플릿 작성# 템플릿 작성from langchain import PromptTemplatetemplate = "서울에서 프렌차이즈점이 아닌 유명한 {food} 맛집 세 곳 추천해줘"prompt = PromptTemplate( input_variables=["food"], template=template) 3. llm 생성# 모델 생성from langchain.chat_models import ChatOpenAIllm = ChatOpenAI(temperature=0, model='gpt-4') 4. 모델에 전달 및 예측 결과 반환..

1. RAG란?- Retrieval-Augmented Cegeration1) 정보 검색(Retrieval): LLM이 텍스트를 생성할 때 관련 정보를 찾아 보고2) 텍스트 생성(Generation) 그 정보를 활용하여 새로운 텍스트를 만드는 기술 2. 정보 검색1) 질문/키워드 입력(쿼리)2) 해당 쿼리와 관련된 정보를 DB나 인터넷에서 찾음3) 유사도 검색: 검색 엔진이 쿼리와 DB에 있는 문서들 사이의 유사도를 계산- 키워드 검색: 사용자가 입력한 단어나 구를 DB나 인터넷에서 직접 찾는 방식- 시맨틱 검색: 단어의 의미와 문맥을 이해하여 보다 관련성 높은 결과를 제공하는 기술 4) 랭킹처리: 검색 결과를 가장 관련이 높다고 판단되는 문서부터 순서대로 나열- 유사도 계산: 문서나 단어 사이의 관련성이..
- Total
- Today
- Yesterday
- 30분
- 스크랩
- 루틴
- 빅데이터 분석기사
- llm
- 실기
- 영어회화
- C언어
- 경제
- 갓생
- 오픽
- SQL
- 아침운동
- 아침
- 티스토리챌린지
- opic
- 다이어트
- 고득점 Kit
- 줄넘기
- Python
- 프로그래머스
- 습관
- 오블완
- Ai
- 기초
- 미라클모닝
- IH
- 뉴스
- ChatGPT
- 운동
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |